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Abstract: Numerous in vitro studies on isolated cells have been conducted to uncover the molecular
mechanisms of action of Panax ginseng Meyer root extracts and purified ginsenosides. However, the
concentrations of ginsenosides and the extracts used in these studies were much higher than those
detected in pharmacokinetic studies in humans and animals orally administered with ginseng prep-
arations at therapeutic doses. Our study aimed to assess: (a) the effects of ginsenoside Rg5, the major
“rare” ginsenoside of Red Ginseng, on gene expression in the murine neuronal cell line HT22 in a
wide range of concentrations, from 10 to 10" M, and (b) the effects of differentially expressed
genes on cellular and physiological functions in organismal disorders and diseases. Gene expression
profiling was performed by transcriptome-wide mRNA microarray analyses in HT22 cells after
treatment with ginsenoside Rg5. Ginsenoside Rg5 exhibits soft-acting effects on gene expression of
neuronal cells in a wide range of physiological concentrations and strong reversal impact at high
(toxic) concentration: significant up- or downregulation of expression of about 300 genes at concen-
trations from 10 M to 10-'® M, and dramatically increased both the number of differentially ex-
pressed target genes (up to 1670) and the extent of their expression (fold changes compared to un-
exposed cells) at a toxic concentration of 10* M. Network pharmacology analyses of genes’ expres-
sion profiles using ingenuity pathway analysis (IPA) software showed that at low physiological
concentrations, ginsenoside Rg5 has the potential to activate the biosynthesis of cholesterol and to
exhibit predictable effects in senescence, neuroinflammation, apoptosis, and immune response, sug-
gesting soft-acting, beneficial effects on organismal death, movement disorders, and cancer.

Keywords: red ginseng; ginsenoside Rg5; gene expression; IPA pathways; network pharmacology;
transcriptomics

1. Introduction

The Panax ginseng Meyer root has been traditionally used in China, Korea, and Japan
for thousands of years for many conditions, including the age-related decline of cognitive
function, general weakness, and enhancing longevity [1-7]. In Europe, ginseng prepara-
tions are recognized as a general tonic or adaptogen in cases of fatigue, weakness, and
decreased mental and physical capacity at daily doses equivalent to 600-2000 mg of pow-
dered herbal substance [3,4]. The results of many clinical trials suggesting the beneficial
effects of ginseng on stress and cognitive functions were critically reviewed in several
comprehensive and systematic review articles [3,8-14]. Overall, ginseng is a promising
treatment for mental, industrial, and chronic fatigue [15-19], and for the cognitive en-
hancement performance of healthy subjects [6,19-24], and patients with mild cognitive
impairments [25-31] and/or neurological disorders [7,26-28].
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Numerous in vitro studies on isolated cells have been conducted to uncover the mo-
lecular mechanisms of action of ginseng extracts and isolated ginsenosides (Supplemental
Table S1 in Supplement 1). However, the concentrations of ginsenosides and the extracts
used in these studies [32-43] were incompatibly higher than those detected in pharmaco-
kinetic (PK) studies in humans [44,45] and animals orally administrated with ginseng
preparations at the highest therapeutic doses [46-51] (Supplemental Table S2 in Supple-
ment 1).

As an example, ginsenoside Rg5, the major ginsenoside of Red Ginseng, was tested
in vitro (Supplemental Table S2 in Supplement 1) mainly in the concentration range from
20 to 100 uM, while the maximal concentration of Rg5 was 2-10 nM (about 2000-fold
lower) in the blood of human subjects taking ginseng orally at a dose of 9 g [44] (Supple-
mental Table S2 in Supplement 1). The maximal concentration of Rg5 was only 81 nM,
[48] (20-3300-fold lower) in the blood of dogs after orally administered ginseng at a dose
of 5 g (corresponding human dose: 39 g). These discrepancies/inconsistencies raise the
question about the clinical relevance of results obtained from in vitro models (where sub-
stantially higher concentrations were used) and the pharmacological activity of ginseno-
sides and their metabolites in nano-molar concentrations detected in animal blood and
human subjects.

To the best of our knowledge, the only in vitro study where the pharmacological
activity of ginsenosides had been tested at nano-molar concentrations was the study,
where in ginsenosides Rg5, Rb1, and Rc protected neurons from glutamate-induced apop-
tosis in vitro in Huntington’s disease (HD) assay at concentrations of 1000, 100 and 10 nM,
respectively [32]. Ginsenosides Rd, Re, Rg3, Rh1, Re, Rd, Rk1, Rh4, and Rk3 were inactive
or exerted toxic effects [32]. Ginsenoside Rg5 was toxic at concentrations from 78 to 104
UM in experiments with murine hippocampal HT22 cells and exhibited a neuroprotective
effect in heat stress-induced apoptosis [33]. The lower concentrations have not been stud-
ied in in vitro experiments even though ginsenosides and their metabolites were detected
at nano-molar concentrations in the circulating blood system of human subjects (Supple-
mental Table S2 in Supplement 1). Furthermore, levels of brain hormones might not be
the same as those in the blood, as it has been reported for estrogens that levels in the brain
were 0.08-0.19 ng/g wet weight [52].

Our study aimed to assess: (a) the effects of ginsenoside Rg5, the major “rare” gin-
senoside of Red Ginseng, on gene expression in the murine neuronal cell line HT22 in a
wide range of concentrations from 10-* to 108 M, and (b) the effects of differentially ex-
pressed genes on cellular and physiological functions in organismal disorders and dis-
eases.

2. Results

2.1. Effect of Ginsenoside Rg5 on Gene Expression Profiles in the Murine Hippocampal Neuronal
Cell Line HT22

Table 1 and Figure 1a show that the total number of genes deregulated by ginseno-
side Rg5 in a concentration range from 1 uM to 1 aM is roughly the same—370 + 69 (RSD
=18.53%), while at a toxic concentration of 100 uM Rg5 differentially regulated 1670 genes
(~ 4.5-fold more). A majority (73%) of these genes (1215 of 1670) were uniquely differen-
tially regulated by Rg5 only at this toxic concentration of 100 pM.

The effect size of gene expression was in a range from 300 to 800-fold change com-
pared to their expression in control cells unexposed to Rgb at all tested concentrations
except the highest toxic concentration of 100 uM. In the latter case, the gene expression
was increasing up to 2600-fold, particularly of genes which were not deregulated at lower
concentrations (Supplemental Table S3a in Supplement 2).

At the highest (toxic) concentration, Rg5 dramatically increased the fold change of
many genes in a dose-response reversal manner (Figure 1b), a common phenomenon
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known as hormesis. That was in line with other observations, where ginsenosides, includ-
ing Rg5, exhibited hormetic response in various in vitro and in vivo studies [53].

Table 1. Number of genes deregulated' by ginsenoside Rg5 in different concentrations in the murine hippocampal neu-
ronal cell line HT22. For details, see Supplemental Table S3 in Supplement 2.

Number of Fold Changes of

Molecules of Rg5 Number of Dere Deregulated Genes the Only Gene,
Sample Name Rg5 Concentration per Cells, ulated Genes & Unique Cab6, Which is De-
Ratio only in Selected  regulated in All
conc. conc.
52 10+ M 12 x 101 1670 1215 731
S3 10°M 12 x10° 280 120 -306
54 10°M 12 x 106 328 122 —286
S5 102 M 12x10° 380 163 274
S6 105 M 12 471 252 -281
57 10-" M 2:102 343 159 -293
S8 108 M 2:108 422 178 -313
1>20-fold compared to control.
Conceniration- effect Concentration-effect e AcOL2
relationship relationship e Cas
T 2000+ 10007 -+~ Coltal
§ M N - total in this concentration -§ & 500 Eifsc
?g I n - unique for this concentration e E 0 —+— Ghitm
:E’: g’: 1000 % ; ——Gyal
°5 g o -500 -+~ Lmna
a° S oool r - Tyfbr2
g " -o- Tpm1
z -1500 T T T 1
0= 0 5 10 15 20
4 & 9 12 18 1? 18 Rg5 concentration, - Ig M
Rg5 concentration, - Ilg M
(@) (b)

(©)

Figure 1. (a) The total number of genes deregulated by ginsenoside Rg5 in concentrations ranging from 1 uM to 1 aM; (b)
ginsenoside Rg5 concentration-dependent fold change expression of selected differentially regulated genes in the hippo-
campal neuronal cell line HT22; (c¢) Venn diagram of genes deregulated by ginsenoside Rg5 at concentrations 1 uM, 1 nM,
1pM,1gMand1aM.

Only nine of 2897 differentially regulated genes (Supplemental Tables S3 in Supple-
ment 2), were commonly deregulated by ginsenoside Rg5 at five or more tested
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concentrations (Ca6, Cth, Collal, Dipk2a, Eif3c, Enox2, Gygl, Tgfbr2 and 1700001F09Rik),
and only two genes (Ca6 and Tgfbr2) at concentrations from 1 uM to 1 aM (Figure 1c, and
Tables S3b—e and 3g in Supplement 2).

Only one gene, Ca6 encoding extracellular enzyme carbonic anhydrase 6, was differ-
entially regulated in all tested concentrations (Table 1), but in a reversed manner: upreg-
ulation at the highest 100 uM concentration, and downregulation at all other concentra-
tions of Rg5.

These observations suggest that Rgb was pharmacologically active in a wide range
of concentrations of neuronal cells from 10 M to 10-'8 M (Figure 1c) and had a significant
impact on the gene expression of hippocampal neurons.

2.2. Effect of Ginsenoside Rg5 on Signaling Canonical Pathways

In Figures 2-5 the effect (-log p-value > 1.3, z-score > 2) of various concentrations of
ginsenoside Rg5 on deregulated intracellular signaling canonical pathways are presented:
neurotransmitters and nervous system signaling (including neuroinflammation, and
CREB signaling in neurons) (Figure 2); cellular immune response, stress and injury sig-
naling (including senescence and EIF2 signaling) (Figure 3); nuclear receptors and tran-
scriptional regulation signaling (including estrogen receptors and sirtuin signaling) (Fig-
ure 4); apoptosis and cancer (including death receptors, PD-1 cancer immunotherapy, and
tumor microenvironment signaling) canonical pathways (Figure 5).
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Figure 2. Effect of Rg5 in concentrations of 1 aM, 10 aM, 1 fM, 1 pM, 1 nM, 1 pM and 100 uM) on
neurotransmitters and nervous system signaling. (a) Brown color depicts predicted activation, blue
color— predicted inhibition of signaling pathway; symbol shows that the activation z-score was <2.
(b) Symbol shows that the -log p-value was < 1.3.
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Figure 3. Effect of Rg5 in concentrations of 1 aM, 10 aM, 1 fM, 1 pM, 1 nM, 1 uM and 100 uM) on
cellular immune response, stress and injury (including senescence and EIF2 signaling) signaling. (a)
The brown color depicts predicted activation, blue color—predicted inhibition of signaling path-
way; the symbol shows that the activation z-score was < 2. (b) the symbol shows that the -log p-
value was < 1.3.
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Figure 4. Effect of Rg5 in concentrations of 1 aM, 10 aM, 1 fM, 1 pM, 1 nM, 1 uM and 100 uM) on
nuclear receptors and transcriptional regulation (including estrogen receptors and sirtuin) signal-
ing. (a) The brown color depicts predicted activation, blue color —predicted inhibition of signaling
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pathway; the symbol shows that the activation z-score was < 2. (b) The symbol shows that the -log
p-value was <1.3.
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Figure 5. Effect of Rg5 in concentrations of 1 aM, 10 aM, 1 fM, 1 pM, 1 nM, 1 pM and 100 uM) on
apoptosis and cancer (including death receptor signaling, programmed death PD-1 cancer immu-
notherapy and tumor microenvironment) canonical pathways. (a) Brown color depicts predicted
activation, blue color —predicted inhibition of signaling pathway; symbol shows that the activation
z-score was < 2. (b) Symbol shows that the -log p-value was <1.3.

2.2.1. Neurotransmitters and Nervous System Signaling

The Neuroinflammation Signaling Pathway

The effect of ginsenoside Rg5 in all tested concentrations (1 aM, 10 aM, 1 fM, 1 pM, 1
nM, 1 uM, and 100 uM) on gene expression involved in the neuroinflammation signaling
pathway is shown in Figure 6a.

Figure 6b,c present the predicted activation and inhibition of the pathway at concen-
trations of 100 uM and 1 uM Rg5, respectively. The effects of Rg5 at all other tested con-
centrations are included in Supplement 3 in detail.

Table 2 demonstrates some primary endpoints of the neuroinflammation signaling
pathway and the number of genes matching the pathway for predicting positive (+) or
negative (-) effects of Rg5 in various diseases and cellular processes associated with neu-
roinflammation.
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Figure 6. Effect of Rg5 on neuroinflammation signaling pathway: (a) Heatmap of gene expression (in fold changes com-
pared to control, red, upregulation and green,downregulation), after exposure with ginsenoside Rg5 at different concen-
trations; the 100 pM signature is shown in the leftmost column as solid red or green squares indicating genes that are
upregulated or downregulated, respectively; color intensity indicates the actual log-fold changes; (b) Rg5 in the concen-
tration of 100 uM —predicted inhibition (blue) and activation (brown); (c¢) Rg5 at a concentration of 1 pM— predicted in-
hibition (blue) and activation (brown).

Table 2. The number of genes matching neuroinflammation signaling pathway and predicted effects of Rg5 in various
diseases and cellular processes associated with neuroinflammation *.

Concentration of Rg5, M 10+ 10-¢ 10-° 102 10-% 10~V 10-18
No. of matching genes 23 5 2 6 5 4 8
Amyloid-p plaque accumulation disease + 0 - - 0 + -
Astrogliosis disease + - + + + + -
AP formation/generation disease + - + + + + +
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Blood-brain barrier disruption disease + - +/- + + + -

Major depression disease + - + + + + -

Oxidative stress disease + - - + _ + _

Neuron’s damage disease + - + + + + _

Neuron'’s survival process - - + + + + +
Neuron’s apoptosis process + 0 - —+ + + +—

Th1 cell recruitment process - + - _ _ _ +

T cell recruitment process + 0 - + + + -

GABAergic neuron density process + - + + + + _

Amyloid-3 precursor protein protein + 0 - - 0 + -

1 0—no effect; (+)—activation, (—)—inhibition compared to control.

It is noteworthy that Rg5 likely inhibits the neuronal damage, amyloid 3 clearance
and plague accumulation, blood-brain barrier disruption, major depression, and reactive
oxygen species production both in acto-molar (10* M) and micromolar (10 M) concentra-

tions, and induced reversal effect in the highest toxic concentration (10*M).

The cAMP/CREB Signaling Pathway in Neurons

The effect of ginsenoside Rg5 in all tested concentrations (1 aM, 10 aM, 1 fM, 1 pM, 1
nM, 1 uM and 100 uM) on gene expression involved in cAMP/CREB signaling pathway
is shown in Figure 7a. Figure 7b,c present the predicted activation and inhibition of the
pathway at concentrations 100 uM and 1 uM Rg5, respectively. The effects of Rg5 on CREB
signaling pathway gene expression at all other tested concentrations are included in Sup-
plement 4 in detail.
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Figure 7. Effect of Rg5 on CREB signaling pathway: (a) Heatmap of gene expressions (in fold changes compared to control,
red, upregulation and green, downregulation), after exposure with ginsenoside Rg5 at different concentrations; the 100
uM signature is shown in the leftmost column as solid red or green squares indicating genes that are upregulated or
downregulated, respectively; color intensity indicates the actual log-fold changes; (b) Rg5 at a concentration of 100 uM—
predicted inhibition (blue) and activation (brown); (c) Rg5 at a concentration of 1 pM—predicted inhibition (blue) and

activation (brown).

2.2.2. Cellular Immune Response, Cellular stress and Injury Signaling

Senescence

The effect of ginsenoside Rg5 at all tested concentrations (1 aM, 10 aM, 1 fM, 1 pM, 1
nM, 1 uM and 100 uM) on gene expression involved in the senescence signaling pathway
is shown in Figure 8a. Figure 8b,c present the predicted activation and inhibition of the
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pathway at concentrations 100 uM and 1 uM Rg5, respectively. The effects of Rg5 at all
other tested concentrations are included in Supplement 5 in detail.
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Figure 8. Effect of Rg5 on senescence signaling pathway: (a) Heatmap of gene expression (in fold changes compared to
control, red, upregulation and green, downregulation), after exposure with ginsenoside Rg5 at different concentrations;
the 100 uM signature is shown in the leftmost column as solid red or green squares indicating genes that are upregulated
or downregulated, respectively; color intensity indicates the actual log-fold changes; (b) Rg5 at a concentration of 100 uM
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- predicted inhibition (blue) and activation (brown); (c) Rg5 at a concentration of 1 puM —predicted inhibition (blue) and
activation (brown).

Table 3 shows some primary endpoints of the estrogen receptors signaling pathway
and the number of genes matching the pathway for predicting positive (+) or negative (-)
effects of Rg5 in cellular functions associated with senescence signaling. Importantly, Rg5
at concentrations of 106-10-® M activated the cell division cycle and inhibited cellular
senescence, while at the concentration of 104 M reverse effects are noticed.

Table 3. The number of genes matching senescence signaling pathway and predicted effects of Rg5 in cellular processes
associated with neurotransmission '.

Concentration of Rg5, M 10+ 10-6 10-° 1012 10-15 10~V 10-18
No. of matching genes 43 10 5 8 9 3 8
Cell division cycle function - + + + + + +
Cellular senescence function + - - - - - -

1 0—no effect; (+)—activation, (—) —inhibition compared to control.

Eukaryotic Translation Initiation Factor EIF2 Signaling

The effect of ginsenoside Rg5 at all tested concentrations (1 aM, 10 aM, 1 fM, 1 pM, 1
nM, 1 uM and 100 uM) on gene expression involved in the EIF2 signaling pathway is
shown in Figure 9a. Figure 9b,c present predicted activation and inhibition of the pathway
at concentrations of 100 pM and 1 uM Rg5, respectively. The effects of Rg5 at all other
tested concentrations are included in Supplement 6 in detail. Table 4 shows some primary
endpoints of the EIF2 signaling pathway and the number of genes matching the pathway
for predicting positive (+) or negative (-) effects of Rg5 in various diseases and cellular
functions associated with the EIF2 signaling.

Table 4. The number of genes matching EIF2 signaling pathway and predicted effects of Rg5 in various diseases and
cellular functions associated with intracellular signaling .

Concentration of Rg5, M 10+ 10-6 10° 1012 10-15 10~V 10-18
No. of matching genes 32 3 8 5 9 8 9
Cardio—protection disease + 0 - - - - -
ER stress response function + 0 - - - - -
Uptake of D-glucose function - 0 + + + + +
Vascularization function - 0 - - 0 0 +
Assembly of stress granule function - 0 - - 0 0 -
Translation / protein elongation function - - - - + -

1 0—no effect; (+)—activation, (—)—inhibition compared to control.

Notably, Rg5 positively regulates glucose uptake and negatively endoplasmic retic-
ulum stress response at all low concentrations from 102 M, and the reversal effect at the
concentration of 10 M.
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Figure 9. Effect of Rg5 on EIF2 signaling pathway: (a) Heatmap of gene expression (in fold changes compared to control,
red, upregulation and green, downregulation), after exposure with ginsenoside Rg5 in different concentrations; the 100
UM signature is shown in the leftmost column as solid red or green squares indicating genes that are upregulated or
downregulated, respectively; color intensity indicates the actual log—fold changes; (b) Rg5 at a concentration of 100 uM —
predicted inhibition (blue) and activation (brown); (c¢) Rg5 at a concentration of 1 pM— predicted inhibition (blue) and
activation (brown).

2.2.3. Nuclear Receptors Signaling and Transcriptional Regulators Signaling

Estrogen Receptors Signaling

The effect of ginsenoside Rg5 at all tested concentrations (1 aM, 10 aM, 1 {fM, 1 pM, 1
nM, 1 uM and 100 uM) on gene expression involved in estrogen receptors signaling path-
way is shown in Figure 10a. Figure 10b,c present predicted activation and inhibition of
the pathway at concentrations of 100 pM and 1 uM Rg5, respectively. The effects of Rg5
at all other tested concentrations are included in Supplement 7 in detail.
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Figure 10. Effect of Rg5 on estrogen receptors signaling pathway: (a) Heatmap of gene expression (in fold changes com-
pared to control, red, upregulation and green, downregulation), after exposure with ginsenoside Rg5 at different concen-
trations; the 100 uM signature is shown in the leftmost column as solid red or green squares indicating genes that are
upregulated downregulated, respectively; color intensity indicates the actual log—fold changes; (b) Rg5 in the concentra-
tion of 100 uM — predicted inhibition (blue) and activation (brown); (c) Rg5 in the concentration of 1 uM—predicted inhi-
bition (blue) and activation (brown).

Table 5 outlines some primary endpoints of the estrogen receptors signaling pathway

and the number of genes matching the pathway for predicting positive (+) or negative (-)
effects of Rg5 in various diseases and cellular functions associated with estrogen receptors

signaling.
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Table 5. The number of genes matching estrogen receptors signaling pathway and predicted effects of Rg5 in various
diseases and cellular functions associated with neurotransmission *.

Concentration of Rg5, M 10+ 10-6 10 102 10-15 10-7 10-18
No. of matching genes 56 5 13 8 10 1 11
Atrophy of muscle disease + - - - 0 +
Breast cancer cell line tumorigenesis disease 0 - + 0 - 0 +
Metastasis disease + 0 - 0 - 0 0
Oxidative stress disease + 0 0 0 0 0 +
Tumor cell proliferation disease 0 - + 0 - 0 +0
Angiogenesis function 0 - + + - 0 +
Apoptosis function + + - - - 0 +
Cell proliferation function - - + 0 - 0 +
Coronary vessel relaxation function - 0 - + 0 0 +
Neuroprotection function + - + + + + +
Survival of cells function + - + + + + 0
Synapse maturation function - + + - - 0 +

1 0—no effect; (+)—activation, (—) —inhibition compared to control.

Notably, Rg5 is expected to increase neuroprotection and survival of cells in a wide
range of concentrations from 10~ to 10-'® M, but inhibits muscle atrophy and apoptosis at
the concentrations from 10~ to 10> M.

Sirtuin Signaling Pathway

The effect of ginsenoside Rg5 at all tested concentrations (1 aM, 10 aM, 1 fM, 1 pM, 1
nM, 1 uM and 100 uM) on gene expression involved in SIRT signaling pathway is shown
in Figure 11a. Figure 11b,c present the predicted activation and inhibition of the pathway
at concentrations of 100 uM and 1 pM Rgb, respectively. The effects of Rg5 on SIRT sig-
naling pathway gene expression at all other tested concentrations are included in Supple-
ment 8 in detail.
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Figure 11. Effect of Rg5 on SIRT signaling pathway in neurons: (a) —Heatmap of gene expressions (in fold changes com-
pared to control, red, upregulation and green—downregulation), after exposure of neurons with ginsenoside Rg5 in dif-
ferent concentrations; the 100 uM signature is shown in the leftmost column as solid red or green squares indicating genes
that are upregulated or down-regulated, respectively; color intensity indicates the actual log—fold changes; (b) Rg5 in the
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concentration of 100 uM —predicted inhibition (blue) and activation (brown); (c) Rg5 in the concentration of 1 nM —pre-
dicted inhibition (blue) and activation (brown).

2.2.4. Apoptosis and Cancer Signaling

Death Receptor Signaling

The effect of ginsenoside Rg5 at all tested concentrations (1 aM, 10 aM, 1 {fM, 1 pM, 1
nM, 1 uM and 100 uM) on gene expression involved in the death receptors signaling path-
way is shown in Figure 12a.
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Figure 12. Effect of Rg5 on death receptors signaling pathway: (a) Heatmap of gene expression (in fold changes compared
to control, red, upregulation and green, downregulation), after exposure with ginsenoside Rg5 at different concentrations;
the 100 uM signature is shown in the leftmost column as solid red or green squares indicating genes that are upregulated
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or downregulated, respectively; color intensity indicates the actual log—fold changes; (b) Rg5 at a concentration of 100
puM —predicted inhibition (blue) and activation (brown); (c) Rg5 at a concentration of 1 uM—predicted inhibition (blue)
and activation (brown).

Figure 12b,c present predicted activation and inhibition of the pathway at a concen-
tration of 100 uM and 1 uM Rg5, respectively. The effects of Rg5 at all other tested con-
centrations are included in Supplement 9 in detail. Table 6 demonstrates some primary
endpoints of the death receptors signaling pathway and the number of genes matching
the pathway for predicting positive (+) or negative (=) effects of Rg5 in cellular functions
associated with apoptosis.

Table 6. The number of genes matching senescence signaling pathway and predicted effects of Rg5 in cellular processes
associated with apoptosis .

Concentration of Rg5, M 10+ 10-6 10-° 1012 10-15 10~ 10-18
No. of matching genes 8 0 0 5 5 2 2
Apoptosis function - 0 0 - - - -
Cell shrinkage function - 0 0 - - - +
Chromatin condensation function - 0 0 - - - -
DNA fragmentation function - 0 0 - - - -
DNA repair function + 0 0 + + + +

1 0—no effect; (+)—activation, (—)—inhibition compared to control.

Remarkably, Rg5 inhibits apoptosis, cell shrinkage, chromatin condensation, DNA
fragmentation and activates DNA repair at all concentrations from 10M to 10-18 M.

Tumor Microenvironment Pathway

The effect of ginsenoside Rg5 at all tested concentrations (1 aM, 10 aM, 1 fM, 1 pM, 1
nM, 1 uM and 100 uM) on gene expression involved in tumor microenvironment signal-
ing pathway is shown in Figure 13a. Figure 13b presents the predicted inhibition of the
pathway at a concentration 1 uM Rg5. The effects of Rg5 at all other tested concentrations
are included in Supplement 10 in detail.

Table 7 demonstrates some primary endpoints of the tumor microenvironment sig-
naling pathway and the number of genes matching the pathway for predicting positive
(+) or negative () effects of Rg5 in various diseases and cellular functions associated with
the tumor microenvironment signaling.

Table 7. The number of genes matching tumor microenvironment signaling pathway and predicted effects of Rg5 in var-
ious diseases and cellular processes associated with neurotransmission 1.

Concentration of Rg5, M 104 10-6 100 10 1015 1077 1018
No. of matching genes 29 5 2 4 7 4 5
Apoptosis of tumor cells Disease -+ ++ 0 -- -- -+ -+
Viability of tumor cells function + - 0 + + + +
Survival of tumor cells disease + - 0 + + + +
Proliferation of tumor cells disease - - 0 + + + +

Metastasis disease + - 0 + + + +
Tumor cell invasion disease - - 0 + + + +

1 0—no effect; (+)—activation, (—)—inhibition compared to control.

Importantly, Rgd may activate apoptosis of tumor cells, increase viability and sur-
vival of tumor cells and metastasis, whereas proliferation of tumor cells and tumor cell
invasion are potentially reduced at the concentration of 10~ M.
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Figure 13. Effect of Rg5 on tumor microenvironment signaling pathway: (a) Heatmap of gene expression (in fold changes
compared to control, red, upregulation and green, downregulation), after exposure with ginsenoside Rg5 in different con-
centrations; the 100 mM signature is shown in the leftmost column as solid red or green squares indicating genes that are
upregulated or downregulated, respectively; color intensity indicates the actual log—fold changes; (b) Rg5 at a concentra-
tion of 1 uM—predicted inhibition (blue) and activation (brown).
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The Programmed Cell Death Receptor PD-1 Cancer Immunotherapy Pathway

The effect of ginsenoside Rg5 at all tested concentrations (1 aM, 10 aM, 1M, 1 pM, 1
nM, 1 uM and 100 uM) on gene expression involved in the programmed cell death recep-
tor PD-1 cancer immunotherapy signaling pathway is shown in Figure 14a.
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Figure 14. Effect of Rg5 on PD-1 cancer immunotherapy signaling pathway: (a) Heatmap of gene expression (in fold
changes compared to control, red, upregulation and green, downregulation), after exposure with ginsenoside Rg5 at dif-
ferent concentrations; the 100 uM signature is shown in the leftmost column as solid red or green squares indicating genes
that are upregulated or downregulated, respectively; color intensity indicates the actual log—fold changes; (b) canonical
pathway activation state; (c) Rg5 at a concentration of 100 uM —predicted inhibition (blue) and activation (brown); (d) Rg5
at a concentration of 1 uM —predicted inhibition (blue) and activation (brown).
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Figure 14b illustrates the predicted activation of the PD-1 cancer immunotherapy
signaling pathway, while Figure 14c,d show the effects of Rg5 at concentrations 100 uM
and 1 uM, respectively. The effects of Rg5 at all other tested concentrations are included
in Supplement 11 in detail. Table 8 outlines some primary endpoints of the apoptosis re-
ceptor PD-1 cancer immunotherapy signaling pathway and the number of genes match-
ing the pathway for predicting positive (+) or negative (-) effects of Rg5 in various diseases
and cellular functions associated with the PD-1 signaling

Table 8. The number of genes matching apoptosis receptor PD-1 cancer immunotherapy signaling pathway and predicted
effects of Rg5 in various diseases and cellular processes associated with cancer immunotherapy .

Concentration Rg5, M 10~ 10-6 10 102 10-1 10-17 10-18
No. of matching genes 9 4 1 2 6 1 3
Cancer cell proliferation disease + - - 0 + + +
T-cell exhaustion disease + + 0 - - 0 +
Effector function of T cells function - - 0 + + 0 -
T—-cell apoptosis function - + 0 0 - - +
T—cell proliferation function - - 0 + + 0 0
T—-cell activation function - - 0 + + 0 -
Trl cell specialization function + + 0 - - 0 +

1 0—no effect; (+)—activation, (—)—inhibition compared to control.

Overall, Rg5 activates the PD-1 signaling pathway at concentrations between 10
and 10°M.

2.3. Effect of Ginsenoside Rg5 on Metabolic Pathways

Figure 15 shows the effect of various concentrations of ginsenoside Rg5 on signifi-
cantly (-log p—value > 1.3, z-score > 2) deregulated canonical metabolic pathways.
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Figure 15. Effect of Rg5 at concentrations of 1 aM, 10 aM, 1 fM, 1 pM, 1 nM, 1 uM and 100 uM) on
significantly deregulated metabolic signaling pathways. (a) The brown color shows the predicted
activation, blue color—predicted inhibition of signaling pathway; the symbol shows that the activa-
tion z-score was < 2. (b) the symbol shows that the —log p-value was <1.3.

Some of them were observed at all tested concentrations, including the cholesterol
biosynthesis metabolic super—pathway (Figure 16).
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Figure 16. Effect of Rg5 on cholesterol biosynthesis metabolic pathway: Heatmap of gene expression
(in fold changes compared to control, red, upregulation and green, downregulation), after exposure
with ginsenoside Rg5 at different concentrations; the 100 uM signature is shown in the leftmost
column as solid red or green squares indicating genes that are upregulated or downregulated, re-
spectively; color intensity indicates the actual log—fold changes.

2.4. Predicted Effects of Ginsenoside Rg5.
2.4.1. Molecular and Cellular Functions

Figure 17 demonstrates that Ginsenoside Rg5 can have a significant impact on some
of the cellular functions only at the highest concentration. On the contrary, at low concen-
trations, Rg5 has no impact on some other cellular functions at the highest concentration
but exhibits a significant effect in low concentrations. Rg5 has a trend to inhibit the apop-
tosis of neuronal cells at a wide range of concentrations with the maximal impact at the
concentration of 1 pM. Figure 18 demonstrates the molecular networks of deregulated
genes that contribute to the inhibition of apoptosis at the concentration of Rg5 1 pM and
the reversal effect at the toxic concentration of 100 uM.
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Figure 17. Effect of Rg5 at concentrations of 1 aM, 10 aM, 1 fM, 1 pM, 1 nM, 1 uM and 100 uM) on
molecular and cellular functions (including apoptosis of neurons). (a) the brown color shows the
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predicted activation, blue color the predicted inhibition of signaling pathway; the symbol shows
that the activation z—score was < 2. (b) the symbol shows that the —log p-value was <1.3.
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Figure 18. Predicted effects of Rg5 on apoptosis: (a) activation (brown) at a concentration of 100 uM; (b)—predicted inhi-
bition (blue) at a concentration of 1 pM.
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2.4.2. Physiological Functions

Ginsenoside Rg5 can have a significant impact on some of the cellular functions only
at the highest concentration, Figure 19. On the contrary, at low concentrations, Rg5 has no
impact on some other cellular functions at the highest concentration but exhibits a signif-

icant effect in low concentrations.
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2.4.3. Diseases and Disorders

Figure 20 shows that ginsenoside Rg5 can have a significant impact on some types of
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Figure 19. Effect of Rg5 at concentrations of 1 aM, 10 aM, 1 fM, 1 pM, 1 nM, 1 uM and 100 uM) on
physiological functions, including organismal death. (a) The brown color shows the predicted acti-
vation, blue color the predicted inhibition of signaling pathway; the symbol shows that the activa-
tion z—score was < 2. (b) The symbol shows that the -log p-value was < 1.3.

cancer and movement disorders both at low and high concentrations.
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Figure 20. Effect of Rg5 at concentrations of 1 aM, 10 aM, 1 fM, 1 pM, 1 nM, 100 nM *, 1 uM and 100 pM) on diseases and
disorders, including movement disorders. (a) The brown color shows the predicted activation, blue color the predicted
inhibition of signaling pathway; the symbol shows that the activation z—score was < 2. (b) the symbol shows that the —log
p-value was < 1.3. *: Results from Network Pharmacology of Red Ginseng (Part II).
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Molecular networks of deregulated genes that contribute to the movement disorders
and cancer at the concentration of Rg5 100 pM and 1 aM are sown in Figures 21 and 22.
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Figure 21. Predicted effects of Rgb on movement disorders: (a) activation (brown) at a concentration of 100 uM; (b) pre-
dicted inhibition (blue) at a concentration of 1 aM.
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Figure 22. Predicted effects of Rg5 in cancer: predicted inhibition (blue) at the concentration of 100 nM. *: Results from
Network Pharmacology of Red Ginseng (Part II).

3. Discussion

Results of available pharmacological studies of ginsenoside Rg5 conducted in several
in vitro (Supplemental Table S1 in Supplement 1) and in vivo (Supplemental Table S6 in
Supplement 1) experimental animal models of neurological, inflammatory, metabolic dis-
orders, and cancer have been recently reviewed [54]. It was concluded that ginsenoside
Rg5 has the potential as an anticancer and anti-inflammatory drug, particularly in neuro-
degenerative diseases including mild cognitive impairments, Alzheimer’s disease, Hun-
tington’s disease, and Parkinson’s disease.

In all of these animal studies [16,32,34-36,39,43,55-58], ginsenoside Rg5 was active at
a dose of 10 mg/kg BW, which corresponds to a human dose of 5 g Red Ginseng dry root
containing 2% Rgb (Supplemental Table S6 in Supplement 1).

The maximal concentration of Rg5 in the blood of human subjects taking ginseng
orally at a dose of 9 g was 2-10 nM [44]. Ginsenoside Rg5 protected neuronal cells from
glutamate—induced apoptosis in an in vitro Huntington’s disease assay at a concentration
of 1000 nM [32] and exhibited a neuroprotective effect in heat stress-induced apoptosis at
concentrations of 26-52 uM in experiments with murine hippocampal neuronal HT22
cells, but was toxic at concentrations of 78-104 uM [33]. In our study, ginsenoside Rg5 was
pharmacologically active both at micro-molar and nano—molar concentrations as well as
in a wide/broad range of physiological sub—physiological concentrations from pico-molar
(102 M) to act-molar (108 M), significantly changing the expression (in about
300-800-fold change) of almost the same number of genes (370 + 69; RSD =18.53%) (Table
1, Figure 1). The broad range concentration—gene expression relationships were not lin-
ear for many genes. Some of them were reversed at the toxic concentration of 100 pM
(Figure 1b) if the number of Rg5 molecules was over 2 x 10° per one neuronal cell (Table
1, Figure 1).
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Considering that the blood level of ginsenoside Rg5 is not steady and varies over
time during absorption and clearance for 24-72 h after repeated oral administration, the
target cells of various tissues, including brain tissues, are continuously exposed to differ-
ent doses/concentrations of ginsenoside Rg5. In this context, the difference in gene expres-
sion profiles to varying concentrations of Rg5 and predicted effects on signaling and met-
abolic pathways, molecular networks, cellular, physiological functions in various concen-
trations of Rg5 (Figures 2-22) was remarkable.

Notably, relatively few genes were deregulated at several low concentrations, and
only one gene, Ca6, encoding the extracellular enzyme carbonic anhydrase 6 was regu-
lated by ginsenoside Rg5 at all tested concentrations. Rg5 down-regulated Ca6 at all low
concentrations (Figure 1b), suggesting that Rg5 acted like the antihypertensive Ca6 inhib-
itors acetazolamide and chlorothiazide [59,60].

Most deregulated genes were specific at every single concentration (concentra-
tion—specific gene expression signatures) (Figures 6a, 7a, 8a, 9a, 10a, 11a, 12a, 13a, 14a and
16). This had an impact on the expected activation or inhibition signaling (Figures 2-14)
and metabolic (Figure 15) canonical pathways, cellular (Figures 17 and 18), and physio-
logical (Figure 19) functions, as well as organismal disorders and diseases (Figures 20-22)
at various concentrations.

The IPA analyses of the datasets revealed that ginsenoside Rg5 has the potential to
activate the biosynthesis of cholesterol (the precursor of all steroid hormones).

Furthermore, Rg5 exhibited predictable beneficial effects in senescence, neuroinflam-
mation, apoptosis, organismal death, movement disorders, and cancer.

Typical features of all “low dose” effects compared to the “high dose” effects were
somewhat soft-acting, which was characterized by considerably fewer genes involved in
regulating signaling pathways and cellular physiological functions and disorders.

At first glance, some of the results were contradictory to those observed in other stud-
ies, where significantly higher (micromolar) concentrations (Supplementary Table S1 in
Supplement 1) have been applied, which have no clinical significance simply since the
corresponding human doses are far beyond the traditionally used (Supplementary Tables
S1 and 54 in Supplement 1). For example, it was reported that ginsenoside Rg5 inhibits
NF-kB signaling in macrophages, human epidermal keratinocytes, HeLa, A549, and 293T
cancer cells at the concentration 20-50 uM [38-40] (Table S1 in Supplement 1), but in our
study ginsenoside, Rg5 induces mild upregulation (53— to103—fold) of Nfkb2 gene expres-
sion both at low and highest concentrations (10 aM, 1 fM, 1 pM, and 100 uM).

However, the key point is that the functional role of NF-xB in neurons is different
from other cells [61,62]. In neurons, NF-«B signaling plays a role not only in neuroprotec-
tion, neurodegeneration, inflammation, and apoptosis but also in neuronal development,
learning, memory, and synaptic plasticity [61-63]. Activation of constitutive NF-«B is in-
volved in learning and memory processes via activation of PKA signaling molecules [62].
PKA activates P-CREB protein which leads to the release of neurotrophins in the neurons
for learning and memory. The inhibition of NF-«B signaling resulted in behavior or
memory deficits associated with suppression of CREB phosphorylation [64].

Activation of constituent NF-kB can also prevent the death of neurons by inducing
the production of anti—apoptotic proteins such as Bcl-2, IAPs, and manganese superoxide
dismutase [61,62]. On the contrary, abnormal activation of inducible NF-«kB triggers
pro—apoptotic, pro-inflammatory genes encoding caspases and Bax, IL-12 and IL-17, and
neurotoxic glutamate and iNOS, triggering further cellular damage [62]. In this context,
mild the upregulation of expression of NF-kB is an adaptive (hormetic) stress response of
neuronal cells [53,61-66] to ginsenoside Rg5, which is typical for adaptogens increasing
cell survival [67]. Furthermore, ginsenoside Rg5 activates CREB signaling pathway at four
low concentrations (1 aM, 1 fM, 1 pM, 1 uM) that is also in line with the mechanisms
discussed above and predicted beneficial effects of ginsenoside Rg5 in neurodegeneration
learning and memory.
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There are several limitations of this study. One of them is the lack of scientific litera-
ture about the direction of correlations between gene expression and physiological func-
tion or disease that can be used in Silico analysis for predictions related to some findings
in our experiments. The second limitation is related to the number of concentrations
points in the dose-response correlation study: more intermediate points in the range of
1000 fold difference will show smooth changes from point to point. Other studies where
different experimental outcome measures will be used are required. Finally, clinical stud-
ies in predicted diseases in human subjects are needed.

Overall, this is the first evidence of pharmacological activity of ginsenoside Rg5 in
concentrations detected in human pharmacokinetic studies.

4. Materials and Methods

All materials and methods used in the present study have been described in detail in
our previously published studies [68,69]. Therefore, only a short description of mRNA
microarray hybridization, and Ingenuity pathway analysis (IPA) is provided below.

4.1. mRNA Microarray Hybridization

Murine hippocampal neuronal HT22 cells were seeded and attached for 24 h prior to
drug treatment. Cells were then treated for 24 h at various combinations and concentra-
tions of drugs or DMSO as solvent control (0.5%). Total RNA was isolated using the
InviTrap® Spin Universal RNA mini kit (250 preps; Stratec Molecular). RNA concentra-
tions were determined using the NanoDrop spectrophotometer (NanoDrop Technologies,
Wilmington, Delaware, DE, United States). The quality of total RNA was confirmed by
gel analysis using the total RNA Nanochip assay on an Agilent 2100 bioanalyzer (Agilent
Technologies, Santa Clara, CA, USA). Only samples with RNA index values > 8.5 were
selected for expression profiling. The experiments were performed in duplicate for treated
samples and for control samples by the Genomics and Proteomics Core Facility at the
German Cancer Research Center in Heidelberg, Germany. For mRNA microarray hybrid-
ization the Affymetrix GeneChips® with mouse Clariom S assays have been used accord-
ing to the manufacturer’s instructions. Data analysis was carry out by normalization of
the signals using the quantile normalization algorithm without background subtraction,
and differentially regulated genes were defined by calculating the standard deviation dif-
ferences of a given probe in a one-by-one comparison of samples or groups. The data
were further processed using Chipster software, version 4 (The Finnish IT Center for Sci-
ence CSC).

4.2. Ingenuity Pathway Analysis (IPA)

Microarray data were analyzed by the Ingenuity Pathways Analysis (IPA) software,
Summer release 2021 (QIAGEN Bioinformatics, Aarhus C, Denmark). Using IPA, we per-
formed different predictive algorithmic calculations on transcriptomic datasets, resulting
in varying analyses, including (i) canonical pathways, which displayed the molecules of
interest within well-established signaling or metabolic pathways; and (ii) upstream anal-
yses, which predicted the upstream regulators (any molecule that can influence the tran-
scription or expression of another molecule) that might be activated or inhibited to explain
the expression changes in test datasets.

The interpretation of gene expression data was facilitated by consideration of prior
biologic knowledge. IPA software relies on the Ingenuity Knowledge Base, a frequently
updated database containing biologic and chemical interactions and functional annota-
tions with a large gathering of observations with more than 8.1 million findings manually
curated from the biomedical literature or integrated from 45 third-party databases. The
network contains 40,000 nodes that represent mammalian genes, molecules, and biologic
functions. Nodes are linked by 1,480,000 edges representing experimentally observed
cause—effect relationships that relate to gene expression, transcription, activation,
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molecular metabolism, and binding. Network edges are also associated with a direction
(either activating or inhibiting) of the causal effect [70].

To obtain information about the impact of test samples on cellular signaling path-
ways and networks for biologic functions and diseases downstream of the genes, whose
expression has been altered in a dataset, we used the IPA Core Analysis tool for all tested
datasets. Analysis of transcriptomic data enabled us to predict regulators that are acti-
vated or inhibited based on the distinct up— and downregulation patterns of the expressed
genes, and to determine which causal relationships previously reported in the literature
are likely to be relevant for the biologic mechanisms underlying the data.

4.3. Statistical Analysis

Two statistical methods of analysis of gene expression data were used in Ingenuity
Pathway analysis: (a) Gene-set—enrichment method, where differentially expressed genes
are intersected with sets of genes that are associated with a particular biological function
or pathway providing an ‘enrichment’ score [Fisher’s exact test p—value] that measures
overlap of observed and predicted regulated gene sets [71,72]; (b) The method that based
on previously observed cause—effect relationships related to the direction of effects re-
ported in the literature [73,74] providing so—called z-scores assessing the match of ob-
served and predicted up/down-regulation patterns [70]. The predicted (z-score > 2, or
-log FET p—value > 1.3) effects are based on changes of gene expression in the experimental
samples relative to the control.

5. Conclusions

For the first time, we have demonstrated that ginsenoside Rg5 exhibits soft—acting
effects in a wide range of physiological concentrations and a strong reversal impact at the
highest (toxic) concentrations on gene expression of neuronal cells.

Network pharmacology analyses of genes expression profiles using IPA software
showed that ginsenoside Rg5 have the potential to activate the biosynthesis of cholesterol
(the precursor of all steroid hormones), and to exhibit predictable effects in neuroinflam-
mation, senescence, apoptosis, and immune response, suggesting soft—acting, beneficial
impact on organismal death, movement disorders, and cancer (carcinoma, genitourinary
tumor, solid malignant tumor, and sarcoma).

Supplementary Materials: The following are available online at www.mdpi.com/arti-
cle/10.3390/ph14100999/s1, Supplementary data 1-11.
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